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1. ABSTRACT 
 
A laser-illuminating imaging system operating in the presence of atmospheric turbulence will encounter several 
sources of noise and diffraction induced errors that can make postprocessing the images difficult.  As the beam 
propagates, turbulence induced tilt will cause the beam to wander off axis from the target.  This is especially 
troublesome in imaging satellites due to most turbulence being closer to the Earth’s surface and greatly affecting the 
beam in the early stages of propagation.  Additionally, the returning beam convoluted with the target will encounter 
turbulence induced tilt that appears as apparent movement of the target between image frames.  This results in 
varying beam intensities at the target surface between imaging frames that can affect registration algorithms.  Using 
simulated data, an algorithm using expectation maximization and least squares techniques was developed that has 
the ability to estimate both the tilt of the pulsed laser beam and the apparent movement of the object between 
incoherent frames separately and produce a superior estimate of the target.  The results from this algorithm can be 
used to reduce the effects of beam wander and thus increase the SNR of postprocessed images. 
 

2. INTRODUCTION 
 
When high resolution imagery is desired from laser radar (LADAR) imaging systems there are several factors that 
can limit the systems performance such as diffraction from the LADAR optics, atmospheric turbulence and laser 
beam speckle.  These factors can severely distort the image quality and reduce the resolution of the measured data in 
each frame as shown in Fig. 1.  Due to operating conditions and factors such as cost, size and weight, an adaptive 
optics approach may not be feasible for all situations.  This is where the benefits of a postprocessing algorithm can 
be exploited to improve the quality of LADAR imagery.  The algorithms studied in this report can provide near real 
time estimates of the target image with the distortions such as speckle, blurring and defocus significantly reduced 
when multiple frames of data are available.  
 In a LADAR application, diffraction due to the atmospheric turbulence results in primarily tilt, blur and 
defocus which account for over 93% of phase error [1].  Atmospheric turbulence causes random time delays in light 
as it propagates through the atmosphere, using Fourier optics this time delay or tilt in the propagation field can be 
represented as a spatial shift in the image field [2].  Each pulse of the laser beam is randomly shifted to a different 
position on the target and the returning field after propagation is again shifted and blurred.  Additionally, in a 
LADAR system, speckle is a significant source of noise.  Speckle is caused by the coherency of the illuminating 
laser source, combined with the rough surface of the target [3].  Each frame of data will contain independent 
intensity fluctuations that appear as bright and dark spots as a result of laser speckle. 
  

 
Fig. 1 Example of true target and beam limited detected image with diffraction and speckle  

True Target Detected Image
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3. PREVIOUS WORK 
 
Previously, a blind deconvolution algorithm has been developed to improve the quality of imagery affected by the 
atmosphere’s optical transfer function (OTF) and laser speckle by time averaging multiple deconvolved and 
registered frames [4].  This algorithm uses the Ayers-Dainty blind deconvolution technique [5], however its 
algorithm doesn’t take into account the beam shifting off axis between each frame of data.  Another technique 
commonly used in blind deconvolution problems is the expectation maximization (EM) algorithm developed by 
Dempster, Laird and Rubin [6].   The EM algorithm is an iterative approach to computing the maximum likelihood 
estimate of the unknown variables.  A benefit when working with EM algorithms is that their convergence is assured 
since the algorithm is guaranteed to increase the likelihood function at each iteration.   
 This paper uses the EM algorithm approach to develop a set of equations that can iteratively solve for the 
complete data by solving for the target or complete data, the global shifts and the beam shifts separately in each 
frame.  
 

4. SYSTEM ANALYSIS 
 
The imaging system simulated in this report represents a LADAR system that uses a coherent laser source.  The 
target is illuminated by the laser beam and the returning field is distorted by atmospheric turbulence causing tilting, 
blurring and other higher order [4] effects on the returned image.  Additionally the intensity of the field will contain 
random speckle fluctuations.  The returned image is limited by the size of the beam and thus beam wander results in 
each frame being illuminated at a different position and with a different intensity than the previous frame.  
 An expression for the image obtained from the system is shown in Eq. 1 where 𝑖𝑘 is the kth measured data 
frame which is the true image, o, multiplied by the beam, b, and convoluted with h, the atmospheric point spread 
function (PSF).  The global shifts are represented in the PSF as 𝛼𝑘 and 𝛽𝑘 and the beam shifts are represented as 𝛾𝑘 
and 𝜀𝑘.  
 
 𝑖𝑘 = ��𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 ,𝑦 − 𝑤 − 𝛽𝑘)

𝑤𝑧

 1 

 
4.1 Atmospheric Turbulence 
 
Turbulence in Earth’s atmosphere is caused by random variations in temperature and air motion which changes the 
refractive index of the air [7].  As optical waves propagate in Earth’s atmosphere, the wave is distorted by the 
changes in the refractive index of the air it is traveling through.  The variance in the phase of the field [1] as a result 
of the turbulence is described by Eq. 2 where D is the diameter of the receiver aperture and r0 is the coherence 
diameter.  The coherence diameter or seeing parameter is typically used to describe the optical quality of the 
atmosphere and is typically around 5-10 cm for averaging viewing sites and up to 20 cm for the best viewing sites. 
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The phase variance due to tilt [1] in one axis is given by Eq. 3, this variance is doubled when looking at both axis.  
Nearly 87% of the total phase variance is a result of tilt with image distorting effects such as blurring and defocus 
making up the rest.  Tilt can be successfully removed by an image registration algorithm.  However, the higher order 
image distortions with a residual phase variance given in Eq. 4 are compensated for using a blind deconvolution 
algorithm. 
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4.2 Noise 
 
The majority of noise in a LADAR system can be attributed to one of the following sources: photon counting noise, 
laser speckle and background noise.  Laser speckle is the result of imaging a surface, rough on the scale of an optical 



wavelength, using the coherent light from a laser [8].  The rough surface of an object cause incoming light to reflect 
off at random different angles resulting in a multitude of amplitude spread functions produced from each point on 
the target interfering with one another at the detector.  The variance of the laser speckle, shown in Eq. 5, has a 
negative binomial distribution [8] and is dependent of the coherency of the light and the expected number of photons 
received.  An example of this phenomenon is shown in Fig. 2b, the image has a random intensity modulation that 
severely distorts the image quality when compared to the image obtained from an incoherent light source shown in 
Fig. 2a.  

 𝜎𝑠𝑝𝑒𝑐𝑘𝑙𝑒2 = 𝐸�𝑁𝑠𝑖𝑔𝑛𝑎𝑙� �1 +
𝐸�𝑁𝑠𝑖𝑔𝑛𝑎𝑙�

𝑀 � 5 

Where, 
• 𝐸�𝑁𝑠𝑖𝑔𝑛𝑎𝑙�is the expected number of photons 
• 𝑀is the coherency parameter of the light, 1 = fully coherent, �  = fully incoherent 

 
(a)                                                          (b) 

Fig. 1 Incoherent imaging and coherent imaging with only speckle noise 
 
Speckle noise can be reduced by using a time average of properly registered images.  Depending on the coherence of 
the light, the speckle pattern introduced to each image can be especially troublesome when registering the images.  
If image quality is poor, the algorithm might not properly register each image frame and will blur the image.  
However, a blind deconvolution algorithm used to remove the effects of the atmosphere should be able to improve 
the quality because the blurring effect from improperly registered frames is similar to the blurring effect from the 
atmosphere.    
 Photon counting noise occurs due to the randomness of counting photo-electrons at the detector and follows 
a Poisson distribution.  Additionally background noise is the result of radiation sources besides the illuminating 
beam that are counted by the detector.  The amount of background noise can be measured by taking images with the 
illuminating laser not on. 

5. METHOD 
 
The proposed approach to reduce the effects of the atmospheric turbulence and speckle pattern of imagery obtained 
from a LADAR system is to develop an EM algorithm that accounts for the global shift and the beam shift in each 
frame.  This paper describes the mathematics in developing this algorithm and then the implementation issues with 
the mathematical solution.  Going into the derivation it is assumed that the beam shape is known and can be 
described with a Gaussian intensity profile.  Additionally the shape of the PSF is known, however the tilt or shifts 
are not and also the background radiation can be measured.  These assumptions are not unrealistic for many LADAR 
applications. 
 
5.1 Multiframe Postprocessing Algorithm 
 
Similar to many deconvolution algorithms, the expectation maximization blind deconvolution algorithm is modeled 
after Poisson statistics due to the ease of working with Poisson statistics.  Following the steps outline by Dempster, 
Liard and Rubin [6], first, a statistical model for the incomplete data is defined in Eq. 6.  It is known that the 
incomplete data, d, is an image array of independent Poisson random variables multiplied by the beam with 



unknown shifts and convoluted with the shifted PSF.  The measured background radiation is represented as B in the 
equation.  

 𝐸[𝑑(𝑥, 𝑦)] = ���𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 ,𝑦 − 𝑤 − 𝛽𝑘) + 𝐵
𝑤𝑧𝑘

 6 

 
The complete or desired data is related to the incomplete data through the relationship shown below in Eq. 7.  
 

 𝑑𝑘(𝑥, 𝑦) = ��𝑑𝑘�(𝑥,𝑦, 𝑧,𝑤) + 𝑑𝐵�
𝑤𝑧

 7 

 
The complete data is also considered to be Poisson so that a statistical model of the incomplete data can be related to 
the complete data through Eq. 8 and 9.  Choosing the complete data to be Poisson is acceptable because the sum of 
Poisson random variables is also a Poisson random variable [3].    
 
 𝐸�𝑑𝑘�(𝑥, 𝑦, 𝑧,𝑤)� = 𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 ,𝑦 − 𝑤 − 𝛽𝑘) 8 
   
 𝐸�𝑑𝐵�� = 𝐵 9 
 
The algorithm is derived from the probability mass function (PMF) for a Poisson process [3] given in Eq. 10 where k 
is the number of occurrences and λ is the rate of those occurrences.   
 

 𝑃[𝑘] =
𝜆𝑘𝑒−𝜆

𝑘!  10 

 
Using Eq. 10 and applying the model for the complete data in Eq. 8, results in the complete data likelihood 
expression: 
 

 
𝑃�𝑑𝑘�(𝑥,𝑦, 𝑧,𝑤)�

=
𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 ,𝑦 − 𝑤 − 𝛽𝑘)𝑑𝑘�(𝑥,𝑦,𝑧,𝑤)𝑒−𝑜(𝑧,𝑤)𝑏(𝑧−𝛾 𝑘,𝑤−𝜀𝑘)ℎ(𝑥−𝑧−𝛼𝑘,𝑦−𝑤−𝛽𝑘)𝑑𝑘� (𝑥,𝑦,𝑧,𝑤)

𝑑𝑘�(𝑥, 𝑦, 𝑧,𝑤)!
 

11 

 
Expanding Eq. 11 by solving for all pixel points in the image array results in Eq. 12: 
 

 
𝑃�𝑑𝑘�(𝑥, 𝑦, 𝑧,𝑤) ∀ 𝑥, 𝑦, 𝑧,𝑤�

= �����
𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 ,𝑦 − 𝑤 − 𝛽𝑘)𝑑𝑘�(𝑥,𝑦,𝑧,𝑤)𝑒−𝑜(𝑧,𝑤)𝑏(𝑧−𝛾 𝑘,𝑤−𝜀𝑘)ℎ(𝑥−𝑧−𝛼𝑘,𝑦−𝑤−𝛽𝑘)𝑑𝑘� (𝑥,𝑦,𝑧,𝑤)

𝑑𝑘�(𝑥, 𝑦, 𝑧,𝑤)!
𝑤𝑧𝑦𝑥𝑘
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Following the EM steps, the natural log is taken to get the log-likelihood in Eq. 13.  Greatly simplifying this 
expression is that the products are turned into summations when the natural log is taken. 
 

 
𝐿(𝑜,𝛼𝑘 ,𝛽𝑘 , 𝛾𝑘 , 𝜀𝑘) = �����𝑑𝑘�(𝑥, 𝑦, 𝑧,𝑤) ln�𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 ,𝑦 − 𝑤 − 𝛽𝑘)�

𝑤𝑧𝑦𝑥𝑘

− 𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 ,𝑦 − 𝑤 − 𝛽𝑘) − ln �𝑑𝑘�(𝑥, 𝑦, 𝑧,𝑤)� ! 
13 

 
The expectation step of the EM algorithm takes the conditional expectation of the complete data log likelihood when 
given the incomplete data and past estimates of the unknown parameters.  This derivation is extensive, however the 
resulting expression is given below: 
 

 

𝐸��𝐿(𝑜,𝛼𝑘 ,𝛽𝑘 ,𝛾𝑘 , 𝜀𝑘)�𝑜𝑜𝑙𝑑,𝑑𝑘(𝑥, 𝑦),𝛼𝑘𝑜𝑙𝑑 ,𝛽𝑘𝑜𝑙𝑑 , 𝛾𝑘𝑜𝑙𝑑 , 𝜀𝑘𝑜𝑙𝑑��

= �����
𝑜𝑜𝑙𝑑(𝑧,𝑤)𝑏�𝑧 − 𝛾𝑘𝑜𝑙𝑑 ,𝑤 − 𝜀𝑘𝑜𝑙𝑑�ℎ�𝑥 − 𝑧 − 𝛼𝑘𝑜𝑙𝑑 , 𝑦 − 𝑤 − 𝛽𝑘𝑜𝑙𝑑�𝑑(𝑥, 𝑦)

𝑖𝑘𝑜𝑙𝑑(𝑥, 𝑦)
ln�𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤

𝑤𝑧𝑦𝑥𝑘
− 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 , 𝑦 − 𝑤 − 𝛽𝑘)� − 𝑜(𝑧,𝑤)𝑏(𝑧 − 𝛾 𝑘 ,𝑤 − 𝜀𝑘)ℎ(𝑥 − 𝑧 − 𝛼𝑘 , 𝑦 − 𝑤 − 𝛽𝑘) 

14 

   



Where, 
𝑖𝑘𝑜𝑙𝑑 = ��𝑜𝑜𝑙𝑑(𝑧,𝑤)𝑏�𝑧 − 𝛾𝑘𝑜𝑙𝑑 ,𝑤 − 𝜀𝑘𝑜𝑙𝑑�ℎ�𝑥 − 𝑧 − 𝛼𝑘𝑜𝑙𝑑 , 𝑦 − 𝑤 − 𝛽𝑘𝑜𝑙𝑑�

𝑤𝑧

 

 
The maximization step of the EM algorithm maximizes the conditional expected value of the complete data log-
likelihood from Eq. 14 with respect to the parameters being estimated for a single frame, k0.  This process is 
completed for the three different set of unknowns: the global shifts, the beam shifts, and the true object.  In each 
instance, the terms not dependent on the parameters being estimated can be dropped.  Again, due to extensive 
calculations required to prove each likelihood expression, the results for each of the three unknown parameter sets 
are given below. 
 

 𝐿𝛼,𝛽 = ��𝑜𝑜𝑙𝑑(𝑧,𝑤)𝑏�𝑧 − 𝛾𝑘0
𝑜𝑙𝑑 ,𝑤 − 𝜀𝑘0

𝑜𝑙𝑑���
𝑑𝑘0(𝑥, 𝑦)
𝑖𝑜𝑙𝑑(𝑥, 𝑦) ℎ�𝑥 − 𝑧 − 𝛼𝑘0

𝑜𝑙𝑑 , 𝑦 − 𝑤 − 𝛽𝑘0
𝑜𝑙𝑑�ln (ℎ�𝑥 − 𝑧 − 𝛼𝑘0 ,𝑦 −𝑤 − 𝛽𝑘0�

𝑦𝑥𝑤𝑧
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𝐿𝛾,𝜀 = ��𝑜𝑜𝑙𝑑(𝑧,𝑤)𝑏�𝑧 − 𝛾𝑘0

𝑜𝑙𝑑 ,𝑤 − 𝜀𝑘0
𝑜𝑙𝑑� ln �𝑏�𝑧 − 𝛾 𝑘0 ,𝑤 − 𝜀𝑘0����

𝑑𝑘0(𝑥, 𝑦)
𝑖𝑘0

𝑜𝑙𝑑(𝑥, 𝑦)
ℎ�𝑥 − 𝑧 − 𝛼𝑘0

𝑜𝑙𝑑 ,𝑦 −𝑤 − 𝛽𝑘0
𝑜𝑙𝑑�

𝑦𝑥𝑤𝑧

−��𝑜(𝑧,𝑤)𝑏�𝑧 − 𝛾 𝑘0 ,𝑤 − 𝜀𝑘0�
𝑤𝑧
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 𝑜�(𝑧0,𝑤0) =
∑ 𝑜𝑜𝑙𝑑(𝑧0,𝑤0)𝑏�𝑧0 − 𝛾𝑘𝑜𝑙𝑑 ,𝑤0 − 𝜀𝑘𝑜𝑙𝑑�∑ ∑ 𝑑𝑘(𝑥, 𝑦)

𝑖𝑘𝑜𝑙𝑑(𝑥, 𝑦)
ℎ�𝑥 − 𝑧0 − 𝛼𝑘𝑜𝑙𝑑 , 𝑦 − 𝑤0 − 𝛽𝑘𝑜𝑙𝑑�𝑦𝑥𝑘

∑ 𝑏(𝑧0 − 𝛾 𝑘 ,𝑤0 − 𝜀𝑘)𝑘
 17 

 
These derived equations show that a mathematical solution to solving for each of the parameters individually is 
possible by an iterative process that first estimates the object, 𝑜�, then estimates the global shift parameters, α and β, 
then estimates the beam shifts, γ and ε.  This EM algorithm is guaranteed to converge to the correct solution.  
However a problem exists in the implementation of the two likelihood expressions describing the shifts.  In both 
instances, MATLAB was unable to evaluate the natural log of the shifting beams or PSFs with enough accuracy to 
correctly estimate the shift.  The non-linear properties of the natural log function caused the changes between the 
beam shifts or the PSF shifts from each frame to be smaller than its precision.  This derivation does however prove 
that a more accurate estimate of the object can be found if the beam shifts can be estimated.  
 
5.2 Least Squares Likelihood 
 
An iterative least squares likelihood approach was taken to solve for the global and beam shifts.  Each iteration 
moves the estimate closer to the solution.  This technique is accomplished one frame at a time for first the global 
shifts and then for the beam shifts.  Fig. 2 shows the flow of this technique for estimating the beam shifts, estimating 
the PSF shifts is exactly the same so it is not shown here. 
 

 
Fig. 2 Iterative least squared error algorithm 



 
6. SIMULATION & RESULTS 

 
A combination of the object estimation using the EM algorithm in Eq. 17 and the shift estimation using the least 
squares algorithm was developed in MATLAB using the system characteristics in Table 1.  The algorithm was 
tested using simulated data.  All shifts were random uncorrelated Gaussian variables, the beam shifts had a standard 
deviation of 9 pixels and the global shifts had a standard deviation of 3 pixels. 
 Each frame of the simulated data was created by shifting the unit amplitude Gaussian beam by its random 
shift and multiplied by the target frame and then convoluted with a non-shifted PSF.  Fourier optics properties were 
used to propagate the source to the image plane.  The image detected was then shifted to simulate the tilt component 
of the PSF.  Speckle was added to each frame by applying a negative binomial random variable to each pixel point 
in the imaging plane.  All convolutions were done by transforming into the Fourier domain and multiplying. 

 
Table 1 Simulation parameters 

Receiver aperture diameter, D .3 m 

Beam width, w0 .08 m 

Wavelength 1.55 µm 

Propagation distance 10 km 

Coherence factor, M 40 

Number of frames 30 

Max number of photons in return pulse 100 photons 

Background light 1 photon 

Number of iterations 20 

Pixel shift resolution .2 pixels 
 

The root mean squared error (RMSE) was calculated at each iteration since simulated data used and the truth image 
was known using Eq. 18, where 𝑜� is the estimated image produced at that iteration and o is the known true image.   
 

 𝑅𝑀𝑆𝐸 =
∑ ∑ (𝑜�(𝑥, 𝑦) − 𝑜(𝑥, 𝑦))𝑁

𝑦=1
𝑁
𝑥=1

𝑁2  18 

 
The RMSE was first calculated using the algorithm developed and then calculated again using the same algorithm 
except the beam shifts were not estimated.  The results, in Fig. 3 and Table 2, show that when the beam position was 
estimated, the algorithm did a better job at estimating the object.  The estimated image at the iteration with the 
minimum error is shown in Fig. 4. 



 
Fig. 3 Algorithm RMSE at each iteration 

 
 

Table 2 Minimum photon error with and without beam estimation 
 # of 

iterations Min RMSE 

With beam estimate 11 12.26 photons 
Without beam estimate 13 15.01 photons 

 
 

 
Fig. 4 Estimated object at iteration 11 
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Since simulated data was used, the actual beam and global shifts were compared to their estimated values.  The 
mean of the minimum error difference is shown in Table 3.  Interestingly, the difference between the actual and 
estimated shift values is not minimized at the same iteration as the object but several iterations afterwards.  This 
seems to imply that the shift estimators performance improves as the object estimate improves.   

 
Table 3 Error in shift estimation 

 Mean Difference 
Error 

α .5939 pixels 
β .4137 pixels 
γ 1.2586 pixels 
ε .7887 pixels 

 
 

7. FUTURE WORKS 
 
There are several processes in this algorithm that need to be further studied.  First, the EM algorithm originally 
developed would be the ideal solution since it is guaranteed to converge and can’t fall into a local minimum value 
like the least squares approach.  This might produce shift estimation results that are more accurate and likely further 
increase the performance of the algorithm.  Additionally, the iterative approach needs defined stopping criteria when 
working with non-simulated data.  This might include iterating the beam and global shifts until a minimum error is 
estimated and then going back and again estimating the object with these better shift parameters.  Lastly, noise in 
this simulation was limited to speckle and background noise and a more accurate model should be used to get a 
more accurate performance baseline.  
 

8. CONCLUSION 
 
When imaging with a LADAR system, image quality is severely reduced due to atmospheric turbulence and laser 
speckle noise.  Previous algorithms have been able to compensate for these degradations using blind deconvolution 
and image registration techniques.  However, these algorithms do not take into account the movement of the beam 
between frames due to atmospheric induced tilt.  The algorithm developed in this paper estimated the beam shifts 
along with the global shifting between frames to produce an estimate of the object with significantly less effects 
from atmospheric turbulence and speckle noise.  Additionally, it was able to estimate the beam and global shifts 
while producing an estimated image that had less error than an estimate of the object when the beam was not 
tracked.    
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